

Key Stage 3 Mastery Curriculum – Year 8

Unit	Emerging	Developing	Secure	Excelling
B4 - Bioenergetics	• Recognise and describe the how nearly all life on Earth is dependent on plants	• Identify and describe the photosynthesis reaction in words	• Describe how a leaf is adapted for photosynthesis including the role of the stomata	• Outline how the products of photosynthesis are used by the plants to make organic molecules
	• Recognise the need for Respiration and how different to breathing	• State a word summary for aerobic respiration	• Describe the difference between aerobic and anaerobic respiration	• Outline the similarities and differences between anaerobic and aerobic respiration and the products formed and the implications for the organism
	• Recognise simple food chains	Identify simple food webs	• Describe the interdependence in food webs and ecosystems	Outline how toxins can bio accumulate in an ecosystem
C4 – Periodic table	Recognise properties as physical or chemical and the properties of metals and non-metals	• Identify and state how the periodic table is broken up into metals, non-metals, periods and groups	• Use knowledge of Mendeleev and experiment to describe show how the periodic table can be used to make predictions about element in the periodic table	Outline the chemical properties of metal and non-metal oxides with respect to acidity

Key Stage 3 Mastery Curriculum – Year 8

P4 - Particles	• Recognise the arrangement of particles in a solid, liquid or gas	• State how properties of states link to the arrangement of particles	• Link arrangement of particles and forces between particles to describe their relative motion and therefore internal energy	• Link temperature to density and internal energy and therefore explain changes of state
	 Recognise the defining properties of solids liquids and gases in terms of shape, volume and density 	 Identify how density explains why objects float or sink - 	• Describe what causes pressure in fluids in terms of particle collisions and the ratio force over area	 Use Archimedes principle to explain why objects float or sink
B5 – Ecosystems and adaptations	 Recognise how different animals are adapted to their different habitats 	 State how adaptations to some organisms link to them being more successful than others at survival 	• Link adaptations and environment changes to describe successful reproduction or extinction	• Explain the role of gene banks in maintaining biodiversity.
C5 – Earth and Atmosphere	• Recognise the basic structure and composition of the Earth and Its atmosphere	• Identify how rocks move around the Earth forming sedimentary, metamorphic and igneous rocks.	• Describe the role humans have played in the Carbon Cycle	• Explain how Earth is a limited resource and the role humans play in this in terms of climate and recycling
P5 - Forces	 Recognise forces (using arrows) as pushes and pulls (or twists) on an object caused by interaction with other objects 	 State how all the forces acting on an object can be replaced with one resultant force (or moment) 	• Describe the effect of a resultant force on an object – to change its shape or motion	• Use the idea or unbalanced forces to explain change in simple situations such as objects in freefall or see saws
	Recognise different types of contact and non-contact forces	 Identify and calculate the speed of moving objects – interpret distance time graphs of simple journeys 	• Describe and define forces applied over distance as work (a way of transferring energy)	 Use information about forces to predict and explain the motion of an object by sketching a distance time graph

Key Stage 3 Mastery Curriculum – Year 8

B6 - Inheritance	• Recognise how organisms get their genetic information	• Identify variation in a species and some key words (Gene, DNA and chromosomes)	• Describe variation as continuous or discontinuous and the graphical skills required to present it, along with the roles of Watson, Crick, Wilkins and Franklin in the development of the DNA Model	• Use punnet squares to explain the hereditary process outcomes
C6 - Materials	 Recognise via experiment that some elements are more reactive then others 	 Identify predictions about reactions using the reactivity series 	• Describe how carbon can be used to extract some metals from their ores	• Explain why carbon cannot be used to extract all metals from their oxides
	• Recognise how different materials differ in properties	• State how we use some different materials	• Describe properties of polymers, ceramics and composites.	• Explain the link between properties of polymers, ceramics and composites to their uses.
P6 - Space	• Recognise the nature of Our sun as a star and it's place in our galaxy and universe using light years as a measurement of distance	• State the link between the length of a day, year and month with the motion of the planets.	• Describe and explain the effect of the Earth's rotation and tilt. Explain the variation in day length	 Outline how both lunar and solar eclipses form.
	• Recognise the cause of the force responsible for the motion of planets.	• Identify the relationship between gravitational field strength and distance or mass (qualitatively only).	• Describe the link between orbital period, gravitational field strength and distance from the Sun.	• Outline and explain the link between distance from the sun and orbital speed of a planet.

Key Stage 3 Mastery Curriculum – Year 8

Working Scientifically	• Recognise important variables in investigations, selecting the most suitable to investigate.	• Use scientific knowledge and understanding to plan investigations and identify the independent, dependent and control variables.	• Identify key variables in different and difficult situations and describe in the planning stage how to take control of some variables that cannot be controlled easily.	• Use key scientific words and terms to explain choice of methods and procedures to investigate different kinds of scientific questions.
	 Repeat sets of observations or measurements selecting suitable ranges and intervals 	 Collect data by choosing a suitable range and using the right numbers and values for measuring and observing. 	 Make a risk assessment by acting and seeking advice from the right sources of information. 	 Choose and explain why the methods and procedures that are chosen will minimise error and allow precise and reliable data.
	 Write a straightforward conclusion from data found and explain the differences in repeats 	 Use scientific knowledge to identify why some data or observations have limitations or don't follow a regular pattern. 	 Assess the strength of evidence, deciding whether it is sufficient to support a conclusion 	 Process data, including using multi-step calculations and compound measures, to identify complex relationships between variables.
	• Evaluate the effectiveness of chosen method and give practical ideas on how to improve the method	 Make valid comments on the quality of the collected data 	 Suggest ways of changing the chosen method so that more reliable data can be collected. 	 Use detailed scientific knowledge to suggest ways of modifying the experimental procedures with reasons and suggest strategies that will take the investigation further than it originally was